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CORRECTING PARTIAL, MULTIPLE, AND CANONICAL CORRELATIONS FOR ATTENUATION

Introduction

In dealing with multivariate correlational techniques and fallible

data, one is faced with the same difficulties that have been pointed out

for the product-moment correlation (Finucci, 1970) and other related

measures of association (Stanley and Livingston, 1970). Correlations based

on fallible variables will result in values which are underestimates of

the correlations among the true parts of the variables. (The truth of this

statement for all multivariate situations has not been proven analytically,

but Cochran's (1970) work regarding multiple correlation suggests that the

statement does, in fact, hold true.) Investigators have been'inclined to

ignore the problems of unreliability, being content with fallible under-

estimates of the true relationship and avoiding "questionable" correction

for attenuation procedures. However, such an approach ignores useful in-

formation. In addition to providing a means for obtaining estimates of

true score correlations, correction for attenuation formulas facilitate

understanding of the effects of unreliability on the results. Information

of this type is useful, for example, in deciding how much could be gained by

expending time and money to develop more reliable measurement.

Size of the correlation coefficient is not the only concern for research

involving multivariate measurement. One is often more concerned with the
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contribution of each individual variable to the overall result. For ex-

ample, a canonical correlation analysis rarely stops with the coefficient

itself. The relative sizes of the weighting factors for each of the

variables in the canonical variates are vital for interpretation. Errors

of measurement attenuate these weighting factors as well as the overall

correlation, making the interpretation of canonical correlations and vari-

ates computed from fallible data a questionable, or at best difficult, un-

dertaking. This same point holds true for multiple correlation and the use

to which it is put.

The purpose of the present paper is to give the correction for attenua-

tion formulae for partial, multiple, and canonical correlation coefficients

and to discuss, where known, the effects of measurement error on these sta-

tistics. Most of the formulas presented have been derived elsewhere in the

literature. I have simply standardized the notation and extended some of

the derivation where appropriate.

The Partial Correlation Corrected for Attenuation

First, let us consider the first-order partial correlation coefficient.

Suppose we have three variables x1, x2, and x
3
which are fallible measures

of, say, alienation, school achievement, and I.Q. and want to know the true

correlation between alienation and school achievement, controlling for I.Q.

We begin by defining the variable xi to be the sum of its true score, ti,

and errors of measurement,ei (see (1) on list of formulae). We assume that

a".".e = 0,
crt e e

= 0, and (r
e

= 0. That is, we begin with the classi-t.. ..
i i

cal test theory model and the classical test theory assumption.
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The partial correlation between alienation and achievement, controlling

for I.Q., is defined as the zero-order correlation of residuals. The resi-

duals for alienation are given by the difference between the observed values

and the regression estimates of alienation from I.Q. The residuals are

represented symbolically in equations (2) and (3). It is well-known that

the correlation of residuals can be expressed in terms of the three zero-

order correlations. The formula is given by (4), which is the partial r

based on fallible variates. The partial correlation coefficient, corrected

for attenuation, would yield the partial correlation of true score, i.e., the

correlation of true score residuals. We can obtain the correction for attua-

tion formula by starting with the correlation of true score residuals and

working backwards.

The true score residuals are defined as the difference between the true

value and the estimated true value based on a regression of the variable

(t
1
or t2)1 on the true value of the control variable (t

3
) and are given in for-

rullasMand(6).Thepartialcorrelationoft.and t
2

controlling for t
3

is then given by (7). Expanding numerator and denominator, we can use some

of the well-known properties of classical test theory to express the true

partial correlation in terms of the fallible zero-order correlations and

reliabilities. The result, given in (11) is the correction for attenuation

formula for a first-order partial correlation. It should be noted that the

formula is equivalent to correcting each of the zero-order correlations for

attenuation by the usual way and plugging these values into (4). (See

Livingston and Stanley, 1970.)
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Bohrnstedt (1969) derived a formula for correcting partial correlations

for attenuation due to errors of measurement which is similar to (11), but

does not contain the terms 4
)4

. Upon examining his derivatiol, it was
14.

apparent that he was correcting only for errors of measurement in the control

variable x3. In effect, he had provided the formula for a partially corrected

partial correlation coefficient. On the basis of his formula, Borhnstedt in-

dicates that it is possible for the corrected partial correlation to be less

than the obtained partial correlation. This does not seem to be the case

however, and it appears that correcting for attenuation will result in larger

values. Since 1 , the numerator of (11) will be less than or equal to
f3 i

that of (4). This would tend to decrease the value of the corrected partial

correlation. On the other hand, the denominator of (11), being less than

that of (4), would tend to increase The relative size of the

numerator to the denominator in (11) would seem to result in an overall

increase in the partial correlation, when corrected for attenuation. (A few

numbers I have plugged into the equations indicate such a trend, though I

have no analytic proof of this statement.)

A General Approach to Multivariate Corrections for Attenuation

Meredith (1964) has developed a more general approach to correction for

attenuation problems which he has applied to the canonical correlation problem.

His result can be readily applied to problems involving partial and multiple

correlation. We begin with a variance-covariance matrix,92:
x
, of rank p + q,

where p q is the number of variables being fallibly measured. Under the

assumption that the classical test theory model is appropriate for each of
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the p + q variabes we can write the matrix Zx as the sum of two matrices,

the variance-covariance matrix among true scores, and :E:
e

the

variance-covariance matrix among the errors of measurement (equation 12).

Assuming errors of measurement to covary zero with each other the matrix

e
is a diagonal matrix of the variance errors of estimates. We can ob-

tainEt by subtraction (equation 13). Given ..Et, the matrix of true

score variances and covariances, it is a simple matter to obtain the matrix

of true score correlations by dividing each element by the square root of

the product of the appropriate variances. These operations are shown in

matrix notation in equation (14).

It is important to not here that (14) is equivalent to correcting

each of the zero-order correlations in P
x

, the matrix of fallible correla-

tions, for attenuation in the usual manner. That such is the case becomes

clear if we consider each of the p + q variables to have mean=zero and

variance=one. Under these conditions = P
x
and E

e
is a diagonal matrix

of alienation coefficients. Thus, the matrix :E
t
of (13) is the matrix of

fallible intercorrelations (P
x
) with reliabilities on the diagonal, which

is the true-score variance-covariance matrix of standard deviates. The

operations shown in (14) now involve dividing every correlation in Px by

the square root of the product of the reliabilities for the appropriate

variables, which is the zero-order correction for attenuation procedure.

So far, the discussion has been in terms of population values. Merredith

has pointed out that a maximum likelihood estimate of Et and thus of Pt can

be obtained from S
x

, the sample variance-covariance matrix, if the reliabilities

of the measures are known (equations 15 and 16). Though the remainder of

the paper continues to use the population values, one can easily substitute

P
t
under the above restriction.
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A general procedure for correcting multivariate correlations for atten-

uation involves the following two steps. First, correct each of the zero-

order correlations for attenuation in the usual way to obtain Pt. Second,

calculate the desired statistic from Pt.

Let us return to the problem of partial correlations. Suppose that we

were interested in obtaining the true score correlations among a set of p

variates controlling for true scores on a second set of q variables. We

could solve the problem by first obtaining Pt (or, more likely, its estimates,

P
t

)
'

partitioning P
t
as shown in (17), and using the matrix solution for

partial correlations (Anderson, 1958, and Morrison, 1967) shown in (18). If

q = 1, 1%. is a p x p matrix of first order partials whose off-diagonal
'12

elements are of the form given in (4). Extending our three-variabe example,

P
t1.2

could be a matrix of attitude-achievement true score correlations,

controlling for I.Q.

The multiple correlation problem involves finding the maximum corre-

lations R between a single criterion and a linear combination of, say,

p predictors. The matrix solution for R
2

is given in (19) (See Anderson,

1958 or Morrison, 1967). The multiple correlation between the true scores

of the p predictors and the criterion could be obtained by substituting

the corresponding true score correlation matrices of (17) into (19), re-

sulting in equation (20).

In the above situation, any of the p + 1 variables could be desig-

nated as the criterion by simply interchanging the appropriate rows and

columns of Pt. A general formula for the squared multiple correlation co-

efficient (SCM) of each of the i variates with the remaining q variates
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corrected for attenuation is given by (21), where I is a p + 1 identity

matrix and D indicates diagonals of the matrices given in parentheses.

A connection can be made here with factor analysis. It is common practice

to factor a matrix of the form & - D (P-1)J , which is the case where

the SCM coefficient is used as an estimate of communality. (However, Harris

(1964) indicates that such a procedure does not represent "true" factor

analysis).

The last statistic we shall discuss is the canonical correlation co-

efficient (Hotelling, 1936). Canonical correlation is a generalization

of the concept of multiple correlation to the case of multiple criteria

(q .1. 1) as well as multiple predictors (p> 1). The objective in such an

analysis is to find the maximum correlation between a linear composite of

the predictors and a linear composite of the criteria. Though Hotelling was

primarily concerned with the largest correlation between these composites,

there are k = min (p, q) possible independent correlations. The k canonical

correlations for any given set of p predictors and q criteria are given by

the roots of the determinantal equation given in (22). If the true-score

correlation matrix of (17) is used, you would have the k canonical corre-

lations corrected for attenuation. For completeness, the formulas for the

weighting vectors to form the linear composite of the criterion variates

( in in 24) and the linear composite of predictor variabes ( b; in 25)

are also given. The formulas would provide either the fallible weighting

vectors or the true-scory weights, depending on which correlation matrices

were used.
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\Effects of Errors of Meaurement

In the introduction it was pointed out that\ the most well-known effect

\
\

of errors of measurement is to produce a statistic which is an underestimate

Iii

of the true value. For example, Cochran (1970) Filas shown that for a number

of situations involving multiple correlation, a g)od estimate of attenua-

ting effects of fallible data is given by (22), though the actual value of

% 1

,

Rx may run 25% higher than this value for posit:ye At and low predic-

tor reliability (fii = 0.5).

A second problem raised when errors of ement are present is the

valid interpretation of results for multivariate

f

correlations. In multiple

and canonical correlations studies an important 4jective is to discover the

relative importance of the predictor and criterilm variables. The inter-

'correlations among these variables and their unreliability can interact to

produce misleading results. An example from Col:hran (1970) illustrates this
I

point.

A common practice in the application of mililtiple correlation (especially

among sociologists) is to partition the predicted variance (R
2
) into portions

uniquely attributable to each predictor and the portion of common variance

predicted. Unreliability can have a substantVal effect on the results of

if

such an analysis. Consider the 2-predictor c4se with /13 as- linift
la

and no error of measurement:

R
3.12 = 385 % of v4riance unique to x

1
= 13.5

% of vEriance unique to x
2

= 13.5

% of vgriance common to both = 11.5
fi

I(
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With the reliability of variable

1 equal to .8; i.e. /47
11

= 0.8

and /47
22

= 1,

2
R
3.12 =`.356

% of variance unique to xl = 10.6
% of variance unique to x2 = 15.6
% of variance common to both = 9.4

With
11 2

/ = 0.6 and /47 = 1
2

R
3.12

=1.328 % of variance unique to xl = 7.8
% of variance unique to x2 = 17.8
% of variance common to both = 7.2

In the above example we see that as the reliabilities of the pre-

dictors become more disparate, the true contributions of each variable

becomes more distorted. This effect can be best understood when you

consider what would happen if xi were removed from the correlation.

R32 = .25 and percent of variance unique to x
2
would be 25. Unrelia-

bility in one of the variables takes part of that variable "out" of the

prediction, shifting predicted variance to the more reliable predictors.

The change in the importance of predictors in multiple correlation caused by

deletion of one of the variables has been referred to as the "bouncing

betas." Difference in the reliabilities adds more bounce to these results.

9
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Formulas for Paper

Correcting Partial, Multiple, and Canonical Correlation for Attenuation

Keith Edwards

The Johns Hopkins University

(1)

(2)

(3)

(4)

(5)

(6)

(7)

xi = ti + ei (for i = 1, 2, 3)

x1.3 = xi - 85(15c3x3

x2.3 = x2 - 85c1x3x3

a PX X p pX
1.3

X
2.3 1 2 x1x3 x2x3
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t2t3
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2.3

/(1 - p
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x2x3

a
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1
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t1t2
t
3
)(t

2
- 8

t t
2 3

Pt _

1
t
2
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3 i/a2

t
1.3

a2
t
2.3

,2 ,2
'(t

i
- 8

t
1
t
3

t
3
)w(t

2
- 8

t t
3

3
)

Derivation of correction formula for partial correlation coefficient.

Expanding the numerator of (7)

a = 8t at
t

8t at
t

a2
t
1.3

t
2.3

t
1
t
2 1 3 2 3 2

t
3 1 3

t1t3 t2t3 t3

Presented at the American Educational Research Association 55th Annual

Meeting, New York City, February 4-7, 1971.
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) (

t
1

at
2 ,T2

(
+ Pt

1
t
3
a
tt 2 t 3 a t

-t'

3

(The last two terms are equivalent except for sign, and thus they sum to zero.)

=aap -p aap
t
1

t2 t1t2 t1t3 tl t2 t2t3

xix2 X
1
X
3

=/(7-75--a a11 22 x x
1 /1°111°33

xi
'22'33

a a
2 3

Therefore, where p
ii

is the reliability coefficient of variable xi

(8) a = a a
t
1.3

t x x
2.3 1 2

P33
(

P33Px
1
x
2

Px x Px
1 3 2-s,-3

Expanding the first term in the denominator of (7) one secures

a
2

= a
2

+
2

a
2

- 28 a
t
1.3

ti t
1
t
3

t
3

t1t3 t1t3

Therefore,

= a
2

+ p
2

a
2

- 2p
2

t
1

t
1
t
3

t
1

t1t3 tl
p
t1t3

= a2
P2

a2
t
1

t
1
t
3
at

1

2 2
Px x P

11
ax

1 3 1= n
11
a
2

x
1 P 1233'

2
(P11P33 P2 )x

1
x
3

(9) a
t
1.3

. a2
xl P33

Similarly, it can be shown that

(P22P33 P!2x3

t2.3

)

(10)
a2

.3

02
x
2

p
33

Substituting (8), (9), and (10) into (7) and simplifying we get
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(11) p
P33Px

1
x
2

Px
I
x
3
Px

2
IL
3

t
1t 2t3 2 2

)t11P33 Px1x022P33 Px2x)

(12) EX = ET + EE

(13) m -ET EX EE

-
(14) P

T
= D(E

T
)
- 1/2

E
T
D(E

1/2

(15) ET = SX - EE

A A
(16) P

T
= D(E

T
)
- 1/2

E
T
D(E

T
)
- 1/2

(17) P
T PT

21 1

PT
22

(18) P = P
T
-P PP

T
1.2 11

T
12

T
1

22
T
21

2 -
(19) Rx Px Pxl Px

21 11 12

(20) R
2
= PT PT

-1
PT

21 11 12

2 -
(21) D(RT ) = I - D(PT1)

(22) IP
X21

P ill P
X12

- AP 1 = 0
22

(23) IP
T21P TI

11

P
T12

- APT 1 = 0
22

-
(24)

( PT21P T1
11

P
T12

- AP ai m0
T
2

- -

(25) b =
_l_p-1

T11 T 12 -i
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q-1

E P P

2 2 i=1 iq ii 2
'_

RTpggpii
(26) RX = R

T
. p

qq q-1

i=E 1

pi

q

where pqq is reliability of the criterion

p
ii

is reliability of the ith predictor

p
iq

is correlation between criterion and ith predictor.
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